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Abstract 

We apply the solution to the recursion relation for the double-off-shell quark 

current to the problem of computing one loop amplitudes with an arbitrary 

number of gluons. We are able to compute amplitudes for photon-gluon scat- 

tering, electron-positron annihilation to gluons. and gluon-&on scattering 

via a quark loop in the case of like-helicity gluons. In addition, we present 

the result for the one-loop gluon-gluon scattering amplitude when one of the 

gluons has opposite helicity from the others. 
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1. INTRODUCTION 

In this paper we will extend the discussion of “simple” one-loop amplitudes involving an 

arbitrary number of gauge bosons begun in Ref. [I] to the case of &CD. In particular, we 

will evaluate the one-loop corrections to the following processes: 

79+99*..9 (1) 

e+e- +gg...g (2) 

99’99...9> (3) 

for the case of like-helicity gluons. In addition, we will consider (3) in the csse where one 

of the gluons has opposite helicity from the rest. In this paper we will consider only those 

contributions to (3) that arise from diagrams containing a closed quark loop. 

In the indicated helicity configurations, all of the above processes vanish at tree level. 

Therefore, their one-loop corrections should be especially simple. In particular, these cor- 

rections must be ultraviolet and infrared finite: there is no counterterm to absorb any 

ultraviolet divergence, and no tree graphs with an additional soft gluons to handle an in- 

frared divergence. Furthermore, since the amplitude for q4 annihilation to n like-helicity 

gluons vanishes at tree level [2], the Cutkosky rules my be used to demonstrate that these 

particular one-loop diagrams do not contain any cuts in the complex plane. 

There are three major ideas which make this calculation feasible. First, we treat the 

gauge bosons in the theory on an equal footing with the fermions by utilizing the multispinor 

representation for the gauge field [3-S]. With a proper choice for the spinor basis, and a 

clever selection of the gauge boson polarization spinors, great simplifications are obtained in 

the expressions involved in the computation of Feynman diagrams. We utilize Weyl-van der 

Waerden spinors for this purpose. A summary of our conventions and notations may be found 
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in Ref. [9]. Second, the many terms in a calculation are conveniently organized into gauge- 

invariant subgroups by the color factorization property of QCD amplitudes [lo]. Finally, 

we will use recursive methods [9,11,12] to obtain expressions for the sums of large groups of 

Feynman diagrams. In particular, we define currents which are the sum of all tree graphs 

containing exactly n gauge bosom in some given helicity configuration. Explicit closed-form 

solutions for these currents exist for certain special helicity configurations. Currents with 

two off-shell particles will play an important role in our discussion of loop amplitudes. 

This paper is organized as follows. In Sec. II, we will discuss the double-off-shell quark 

current. This current consists of a single quark line with both ends off shell plus n on- 

shell gluons. All of the amplitudes discussed in this paper are derived from this current by 

joining the two ends of the quark line and performing the appropriate integration. Since 

we have obtained explicit solutions for this current in the case of n like-helicity gluons, we 

are able to compute the corresponding loop amplitudes in a straightforward manner. We 

present our computation for some of these amplitudes in Sec. III. The favorable form of the 

solution for the double-off-shell quark current allows us to evaluate the integrals exactly for 

arbitrary n. We obtain compact expressions for the amplitudes for processes (l)-(3) in the 

case of like-helicity gluons, and a somewhat more complicated expression for the case (3) 

containing a single opposite-helicity gluon. In the cases where these results overlap those 

previously obtained by Bern, Kosower, and Dixon [13,14] using string-based methods, we 

find agreement. In particular, our computation proves the conjecture made in Ref. [14], as 

well as producing additional new amplitudes. We conclude with a few closing remarks in 

section IV. 

II. THE DOUBLE-OFF-SHELL QUARK CURRENTS 

In this section we will present recursion relations for currents consisting of a quark line 

plus n gluons attached all possible ways. In contrast to the earlier quark currents presented 

by Berends and Giele [ll], both ends of the quark line will be off shell. The generalizations 



from the Berends and Giele relations are straightforward. We are able to solve these recursion 

relations for the case of an arbitrary number of like-helicity gluons. 

We adopt the convention that, in any given diagram, all of the momenta are directed 

inward. The gluons will carry momenta ki, Jr*, . , Ic, and color indices ai, as,. , a,. We will 

denote the quark momentum by P and its color by i. The antiquark will have momentum Q 

and color j. Let us denote the complete double-off-shell quark current by &ji( Q; 1,. . . , n; 7’). 

Momentum conservation implies that not all of the momenta independent; indeed, we have 

P=-[Q+kl+...+k,] 

= -[Q+~(l,n)]. (4) 

We will often suppress “7”’ or “Q” from the argument list of G when convenient. 

The factorization of the current into color and kinematical pieces found by Berends and 

Giele [ll] for the quark current with only one off-shell particle still holds: 

Gji(Q;l,...,n;P)=g” C (n[l,n])ji~(Q;l,...,n;P). 
P(l...n) 

(5) 

In Eq. (5) we have used the notation 

R[1,n]mT”‘T”2~~~T”‘, (‘3) 

where the T”‘s are color matrices in the fundamental representation of the gauge group. 

Because of our definitions, the complete current $ is a symmetric function of its gluon 

arguments, whereas the order of the arguments appearing in rk is important. Hence, the 

current %J is often referred to as the color-ordered quark current. 

The recursion relation satisfied by the color-ordered double-off-shell quark current may 

be obtained in two different ways for each possible chirality of the quark line. The first way 

is to begin with a current containing an off-shell antiquark and on-shell quark. The quark 

may then be taken off mass shell to produce the desired double-off-shell current. Derived in 

this manner, we obtain the following recursion relation for the left-handed quark current: 

n-l 

@,b(Q;l,..., n;P) = -&~~JQ;l,..., j)Jbp(j+l ,..., n) [Q + 4, ~)I,G 
[Q + ~(l,n)]~ ’ 

(7) 
j=O 
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where J(1,. , n) refers to the the color-ordered n-gluon current (see Appendix). The other 

option is to begin with a current containing an off-shell quark and an on-shell antiquark. 

This gives 

” [n(l, 7%) + PI& - 
‘I’&Q;l,...,n;P) = I/?C 

j=l Lnt17 n, + pl! 
.V(l ,...I j)@pa(j+l,..., n;P) (8) 

The solutions to (7) and (8) are equivalent, although it may be easier to use one form instead 

of the other in certain situations. 

The recursion relations for the right-handed quark current are precisely what one would 

expect given (7) and (8). We may write either 

n-1 
‘i+“(Q; 1,. . , n; P) = -~~s.B(Q;l,...,j)~~~(j+l....,~)‘~+’;’t;~~~~~ (9) 

j=O 

or 

~""(e;l,.,.,n;p)=Ji~[R(l,n)+Pl"P j=, [n(l,n) + pl2 J&... d@%+L... vn;p). (10) 

The left- and right-handed currents are connected by the crossing relation 

+““(Q; 1,2,. . . , n; P) = (-~)“+‘E‘=%“~@~~(P; n, n-l,. (1; Q). (11) 

It is not difficult to solve the recursion relations (7) and (9) in the case of like-helicity 

giuons. The gauge choice suited to this case is the one given in Ref. [ll], namely 

(12) 

for the jth gluon. The parameter h appearing in (12) is an arbitrary null vector which 

satisfies 

h'kj#O 

for all of the gluon momenta. For the current, we find that 

u”(h)‘P&Q; I+, . , n+) = u”(h)[Q + ~(1, n)]atiY(Q; 1,. . , n) 

where the scalar function Y is given by 
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Y(Q) = $ 

for zero gluons and 

for one or more gluons. The details of the derivation are similar to those given in Ref. [ll]. 

The function 17 appearing in (15b) ,is given by 

&‘(Q,l,...,j) m 
kjfi[O + R(l,j)]41 

IQ + 4l,j-1)12[Q + K(l,j)12’ 

Note that is is possible to use momentum conservation to eliminate Q from Y in favor of 

P, and then to use (8) to obtain the complete expression for CJ.,L (i.e. without contraction 

with a”(h)]. However, since that expression will not be required in the following, we will 

not present it here. 

Using the same gauge choice, the right-handed current is found to be 

P=(Q; I+, . . ,n+)u,(h) = @k,(h)Y(e; 1,. . ,n), (17) 

utilizing the same function Y. It is a simple matter to verify that the solutions (14) and (17) 

satisfy the crossing relation (11). 

The forms given above are adequate if one wishes to study tree-level processes. Loop 

amplitudes, however, involve the integral of Y (multiplied by some other factors) over Q. 

Unless the other factors contain inverse powers of Q, we see that such integrals will diverge. 

It is easy to argue that the amplitudes for the processes we are considering in this paper are 

ultraviolet finite (in particular, because they vanish at tree-level). Hence, any divergences 

are spurious, To circumvent this difficulty, we introduce a “regulated” current, obtained 

by using the recursion’relation to replace Y( Q; 1,. . . , n) with an expression containing one 

more propagator. This new expression is then continued to d dimensions and simplified 

to the extent possible. This is the same method as the one employed in Ref. [l] to solve 

the corresponding problem in QED loop amplitudes, and the steps required to derive the 

regulated current are similar. Hence, we will only present the result: 
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Y(Q’l”“rlZ)= 
U’(h)lcjp;,[Q + E(l,j)]i7ul(h) 

,~L{[Q+~(1,j-l)]2-~2}{[Q+~(l,j)]a-$} 
n-1 

+C 

,u*u~(h)~~(j+l,n)i~u~(h) 

j-1 {[Q + 4,j-1)12 -P~I{[Q + 4,A12 - PWQ + 417n)12 - p2} ’ 
(18) 

The new quantities Q and p2 appearing in (18) are a result of continuing the vector Q to 

d dimensions. They are defined as follows [15]: Q is a Pdimensional vector consisting of 

the usual space-time components of Q, while n2 is the (d - 4)-dimensional invariant formed 

from the “extra” components of Q, 

-p2 E Q2 _ Q2, (19) 

All of the other momenta and polarization vectors remain in 4 dimensions, since they are 

external quantities [16]. The first term of (18) IS what one would obtain by simply regu- 

lating (15b). The presence of an additional term reveals that it is crucial to regulate before 

reducing the number of propagators, to ensure that no illegal operations are performed on 

divergent quantities. For the processes considered in this paper, the integrals obtained us- 

ing (18) are convergent. If this had not been the case, then it would be necessary to apply 

the recursion relation two (or more) times before regulating the expression. 

III. CONSTRUCTION OF LOOP AMPLITUDES 

In this section we will consider processes which may be studied by joining the two ends 

of the double off-shell quark current together at a vertex. 

A. The process 7~ + gg..‘g 

The simplest amplitude which we may imagine forming from the double-off-shell quark 

current is (1). Figure 1 illustrates the contributions to this process. The photon is attached 

at the point where the two ends of the quark current come together. We may write the 

integrand corresponding to this process as 
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r^(Q;l , . . . , n-l,n-,) = C (-ieg)$Gji( Q; 1,. . , n-1)6<(n). (20) 
P(l...n-1) 

We write “n7” in the argument list of r^ to indicate that the photon has momentum k,. The 

polarization vector for the photon is e(n). We take all external momenta to flow into the 

diagram, ~(1, n) = 0. Physical processes are obtained by crossing. The quark circulating 

in the loop of this diagram has charge e,. Note that Fig. 1 represents all of the one-loop 

contributions to this process since photons do not couple directly to gluons. 

Inserting the color factorization (5) for the quark current produces 

I^cQ; 1 ,...,n-l,n,) = -ie,g”-’ c tr{R[l,n-1]} Tr{q(Q;l,...,n-l)/(n)}. (21) 
P(l...n-1) 

Equation (21) is valid for an arbitrary combination of helicities. The quark currents discussed 

in Sec. II all have like-helicity gluons, so that is the case we will discuss here. To obtain the 

amplitude with a positive helicity photon and n - 1 positive helicity gluons, we make the 

gauge choice given in (12), not only for the gluons, but for the photon as well. We will leave 

h as a free parameter. To obtain the amplitude with a negative helicity photon and n - 1 

positive helicity gluons, we use (12) for the gluons and set h = I;,. For the photon, we write 

u&,)W4 
E,dn-) = (n h)’ . (22) 

Because the computations are similar, we will concentrate on the positive helicity photon 

case, and simply quote the result for a negative helicity photon. 

Before proceeding, however, let us pause to define a color-ordered integrand and a color- 

ordered amplitude. If we write 

I(Q;l’,...,(n-l)+,n:)~-ie,g”-’ c tr{R[l,n-l]}I(Q;l+,...,(n-l)+,nq)) (23) 
P(l...n-1) 

then, obviously 

I(Q; l+, . . . , (n-l)+,n:) = Tr {rk(Q; l+, . . , (n-l)+) /(n+)}. (24) 

The actual amplitude is obtained from (23) by integrating over Q and supplying the factor 

-1 for closing the loop. Likewise, we may obtain a color-ordered amplitude from (24) in 

analogous manner. 
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Let us convert the trace over Dirac matrices that appears in (21) to spinor notation, and 

substitute for the photon polarization. Since we are considering the msssless limit, in which 

the two possible chirabties for the circulating quark are decoupled, we obtain two terms: 

I(Q; l+, . , (n-l)+, n:) = 

-Jz.. - 
(n ‘4 1 

u&“)w(Q; If,. . . , (n-1)+)7&(h) + u=(h)*,&(Q; 1+ , . . . ( (n-l)+)a”(k,)). 

(25) 

Notice that the undotted index of the quark current always appears contracted with the 

gauge spinor. as promised in Sec. II. Hence, we may use (14) and (17) for the spinor 

structure of the currents: 

r(Q;l+ ,,,., (n-1)+,$ =2~~“(k”)~~“un(h)Y(Q;l ,..., n-l). 
(n h) 

We have utilized the Weyl equation plus over-all momentum conservation for the diagram 

to combine the two contributions from (25) into a single term. 

Since (26) does not contain any extra inverse powers of Q, we must use the regulated 

form of Y given in (IS), and perform a d-dimensional integration. The integrals which arise 

during this procedure have been discussed in Ref. [l] m connection with n-photon scattering 

amplitude. Hence, we will proceed immediately to the result for the color-ordered amplitude, 

which reads 

d(l+, . , (n-l)+, n;) = 

uP(h)n~~(P+l,n-l)~ua(h) 

(h/l,. . ,n-l(h)(n h) 
&(k,)[iC(l,~‘-1) - z(t+l, n)]%,(h). (27) 

In order to prove the gauge invariance of the final result, we will consider 

x(1+, . . , (n-l)+,n;) z c d(l+, . . . , (n-l)+,n;). 
C(l...n-I) 

(28) 

Because the color factor appearing in the full amplitude is invariant under cyclic permuta- 

tions of {I,. . . , n-l}, we may replace the color-ordered amplitude A by x/(n-I) without 

altering the value of the final result. In general, to prove gauge invariance. we must consider 
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all of the terms which have the same color structure. Thus, it will be necessary to make 

the indicated replacement to demonstrate that the expression we obtain is independent of 

the gauge spinor. The cyclic symmetry present in this case is more restrictive than the 

permutation symmetry which occurred in the study of the n-photon scattering amplitude. 

As a consequence, although a portion of the derivation presented here is the same as Ref. [l], 

there are certain key differences. 

We begin by multiplying the summand by (n-1 l)/(n-1 1) and applying the Schouten 

identity to the combination u@(h)(n-1 1). We thus obtain 

X(1(1+ ( . . . ( (n-l)+, nq, = 

“-2 ~~(k,)~~~(e+l,n-l)~e6us(h) _ 

(;$” c c (hJl,...,n-l(l)(nh) 
216(k,)[R(1,P--l)-~(e+l,n)]““u~(h) 

C&n-l) .!=I 

+‘;k? 

n-2 uP(k,-1)~oB(e+‘,“-2)~~“6(h) _ 

c c (n-1)1,. . . ,n-ljh)(n h) 
~~(k,)[~(l,P-I)-iz(e+l,n)]~~u,(h). 

C(l...n-1) I=1 

We take advantage of the sum over cyclic permutations by relabeling the momenta in the 

second term of (29) as follows: 

1-+2+3+...+n-l-rl. 

The effect of this relabeling is to produce 

x o&,)[R(S,L) - z(L’+2, n-l) -I,]“%,. 

(39) 

(31) 

A little bit of algebra converts this expression to 

x2=-‘;i?” c c 
“-z .P(lc*)~88(e+l,n-1)~~21g(h) 

C(l...n-1) t=2 
(hll,...,n-lll)( h) n 

x ii&)[iZ(l, e-1) - R(e+l,n-1) -2&]%,(h). ~(32) 

When (32) is recombined with the first term of (29), all but the e = 1 term of that sum 

cancels, and we are left with 
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(-m 
X(l(l+,...,(n-l)+,q) = - 48n2 c 

Ci(k,)~4Psp~(2, n-l)@us(h) 

C(l...n-I) (112,. . . ,n-l~l)(n h) 

J--” c F ““(k~~~~~,~~~~~)~~)~u6(h), (33) 
C(l...n-1) L=l 

In the QED case, the first’ term of (33) vanishes when the sum over permutations of 

(2,. . , n-l} is performed. In this case, however, we have but a cyclic symmetry to work 

with, and this term must be retained. 

Working within the allowed symmetry, we note that the denominators appearing in (33) 

are invariant under cyclic permutations of {l , . . . , n-l}. We will exploit this symmetry 

to recast the sum appearing in the second term, by relabeling the successive terms in the 

sum on t’ so that ICC always becomes li 1, kc+, always becomes ke, etc. In the e = 2 term, 

kl becomes k,-i. For e = 3, Icr becomes k--z, and so on through ! = n - 2, in which !q 

becomes k3. Consequently, we may rewrite (33) as 

(-4)” X(1(1+, . . ( (n-l)+, q = _ 48n2 c 

C(l...n-1) 

~6(IC;1y%b@. 7+wz6M4 

,...,n-lll)(n h) 

-‘;Sn c c n--l 2fi~(lc,)~~‘,8~(2, j-l)eu,(h) 

(112,...,n-lll)(n h) (34) 
C(l...n-I) j=3 

The next step is to use the anticommutation properties of the o-matrices to write 

2fi~(k,)~~‘rnp~(2, j-l)@u,(h) = ii&n)$“BkP~(2, j-l)*,,(h) 

- iLh(k,)#(2, j-l)lcjp$pua(h) 

+ 2kj. tc(2, j-l) fia(k,,)pUs(h). (35) 

It is a simple exercise to demonstrate that the contribution generated from the last term 

of (35) exactly cancels the first term of (34). We will designate the contributions from the 

first and second terms (35) xi and & respectively. 

We will consider & first, since we will perform the fewest operations on it. From (35) 

and (34) we see that 
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If we supply the factor (1 n)/( 1 n) and p e rf orm a bit of spinor algebra. we find 

x2 = (-m 48s2 c 2 v~~‘~~;yL+b y&, 

C(l...n-1) jd 
(37) 

We will save (37) for later cancellation. 

Turning to xi and supplying a factor (1 n)/(l n as we did for the other term, we find ) 

that it may be written 

x* = -‘;$J” c c 
“-’ ii4(kl)~~P(l,j-1)~j~~~~a~~(~~) (1 h) 

C(l...n-1) j=3 (112,. . ,n-Ill) Wlh)’ 
(38) 

We now break xr into two pieces, utilizing momentum conservation and the Weyl equation 

to write 

k+&?%(ki) = -kjp&R”“(2,n-l)U,(ki) 

= -bS”“(2, j-l)ua(h) - kjp~~~~(jt_l,n-l)UP(k~). (39) 

The second contribution in the last line of (39) vanishes if j = n - 1. Thus, 

C(l...n-1) j=3 k2 

we may write 

+ i-v?” n-2 n-r Eb(kr)S(l, j-l)kjjp,&q”n,(kr) (1 h) 

48a2 ’ ’ ’ WC. c(l...n-1) j=2 t=j+l ..,n-111) (llnlh) ’ 
(40) 

where the extension of the second sum to include j = 2 may be done without producing 

a compensating term since the contribution in question vanishes. We have also chosen to 

write the implicit K-sums from (39) explicitly as sums over e. 

The next step is to interchange the order of the double sum appearing in the first term 

of (40). If we subsequently interchange the names of the two dummy summation variables, we 

see that the summation ranges of the two terms are identical. Performing this manipulation 

and rearranging the spinor products a bit we find 

-& (49” 48a2 c F F ““~~~;~yy$yt&i ,y, 
C(l...n-1) j=2 krfl 

n--2 “-l +c,,,j(2,j-l),@ktBi, (1 h) 

(W4 ’ 
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To make the terms of (41) look even more nearly alike, we write 

k,,b = tc*b(l, j-l) - ~,a(2,j-1) 

in the first term and 

(42) 

(43) 80 = R~ql,e-1) - ,@(2,&-I) 

in the second term. Two of the four terms thus generated cancel, leaving only 

& (49” n-2 +-l zTn,b(l, j-l)@(l,!-I)& (1 h) 
481r2 c c c C(l...n-1) j=2 l=z+i (112,. . ,n-l(l) PI44 

$2” c c c 
n-2 n-1 ~~no~(2, j-l)ZbP(2,!-l)kco& (1 h) 

C(l...n-1) j=2 f=j+l N2,. . . ,a-111) Wh)’ 
(44) 

We will designate the first term of (44) x 1~ and save it in its present form. The other 

contribution will be referred to as xrn. We begin operations on it by using the cyclic sum 

to shift all of the dummy indices down by one unit, with ki + k,,-1. The result reads 

Am = - $2” c c c R-2 “-I @,rc,b(l, j-2)iEBP(1,e-2)(kc-1)p(, (n-l h) 

C(l...n-I) j=ZI=j+l (112,...,n-Ill) (n-llnlh) 

Shifting the summations by 1 unit produces 

n-3 n-2 ~~~,8(l,j-l)ilii0(1,e-l)k~~~ (n-1 h) 

C(l...n-I) j=2 t=j+l (1[2,...,n-111) (n-l(alh)’ 

Since 

(1 h) (n-l h) 
(llnlh) - (n-llnlh) = -(sini!)’ 

(45) 

(46) 

(47) 

it is desirable to extend the summation range appearing in (46) to match the summation 

range of the first term in (44). This time, the compensating contribution does not vanish, 

but instead reads 

XIX ~ (-a” n-2 &pkcoe(l, j-l)&(l,n-2)(k,-r)oh (n-l h) 
48n2 c c (43) 

CLn-l) i=2 (112,...,n-Ill) (n-llnlh) 

If we apply the cyclic sum to (48), shifting the dummy momentum labels up by 1 unit, and 

then shift the sum over j, we find that 
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xx = ‘;$” c c n--l iiyzb(2, j-1)@(2,n-l)krpa (1 h) 

(1]2,...,n-111) Wlh) . C(l...n-1) is3 

(49) 

A straightforward application of momentum conservation plus the Weyl equation reveals 

that x1x is exactly the term required to cancel & [see Eq. (37)]. Thus, the entire result 

reads 

X(1(1+,. . .) (n-l)+,n$) = - b--Y c g z ~f%fL;~‘+@;,:;““, 
(50) 

C(l...n-I) jd t=j+l 

implying the amplitude 

x(1+, . .) (n-l)+, r&q, = 

.&-eqJS)(-sJ?)“-l c tr{$-qn-l]} g 2 iJ-$~~~~;;l~k~~~. 
P(l...W1) 3’2 t=j+l 

(51) 

It is easy to repeat the above calculation for a negative helicity photon and n - 1 positive 

helicity gluons. We obtain 

X(1(1+ ) I.. ( (n-l)+, n;) = 

&(-eqJ?)(-dPL C tr {Q(l, n-l]} 
P(l...n-I) 

n-2 “--l ~j~a~““(l,j)K~~(l,P)~ (1 n-1)’ 

x ,?2t?+1 il (112,. . 1 n-111) (l]r+-1)“ 

(52) 

This calculation proceeds in almost exactly the same manner as the positive helicity photon 

case, except that the step corresponding to Eq. (34) should be skipped. 

The amplitudes presented in Eqs. (51) and (52) should reduce to the amplitudes for n- 

photon scattering in the U(1) limit. This limit is simple to obtain: simply replace ail of the 

color matrices by the unit matrix. We,~have verified that the above expressions do indeed 

reduce to the values for the n-photon amplitude reported in Ref. (11. 
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B. The process efe- -+ 99.. .g 

The lowest order diagrams for electron-positron annihilation to gluons are obtained from 

Fig. 1 by attaching an electron-positron pair to the photon. There are no additional diagrams 

because leptons do not couple directly to gluons. This process is closely related to the one 

examined in the last section: in the limit where the e+e- pair becomes collinear it is simply 

some (divergent) factor times the amplitude obtained above. Thus, it is not surprising 

that the entire discussion of the last section may be applied to this case with very little 

modification. 

For a negative helicity positron of momentum p, a positive helicity electron of momentum 

Q, and rr positive helicity gluons we find 

&I-; 1+ ,...,(n)+;q+) = 

;z2( ,fi);(~ )tr in[l, n~j “2 2 kjp~~“P(1,3)~Ep~(l,e)~ (1 n)‘* 
j+(=j+l (1127”‘3n11)@ q) (llql”) 

(53) 
. ” 

(all momenta directed inward). To obtain the amplitude for a positive helicity positron of 

momentum p, a negative helicity electron of momentum q, and n positive helicity gluons, 

interchange p and q in the above expression. 

C. The process 99 --t gg..‘g 

We now turn to the process of gluon-gluon scattering. At present, we have only been 

able to evaluate those diagrams which contain a quark loop. In principle, the diagrams 

involving a gluon loop should be obtainable from a gluon current with two off-shell gluons. 

However, the complicated form of the recursion relation for this object [9] makes this path 

difficult to follow. Nevertheless, it is possible to use supersymmetry [17] to obtain some of 

the subamplitudes where a gluon loop replaces the quark loop. 

Fig. 2 illustrates the process in terms of the double off-shell quark current and the giuon 

current (single off-shell particle). To avoid over-counting we will “anchor” the nth gluon 

and write the integrand as 
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n--l 

r^cQ;l,...,n)= c c 
P(l...Il-1) t=l 

,!(n-lt-1)!(-ig)(Tr)ijy’~ji(Q;l,....ti~;(t+l,...,n). (54) 

In specifying that the sum on t begin at 1 instead of 0, we have dropped the (vanishing) 

tadpole diagram. Insertion of the color factorizations for the quark and gluon currents 

[Fqs. (5) and (Al)] produces 

n-, n-l 
I^cQ;l,..., n) = -2ig” C C C tr {n[l, t]TI} tr[F’R[t+l, s]~~~[S+l, n-l]} 

P(l...n-1) t=1 a=: 

xTr{*(o;l,..., t) J@-el,. . . (S, n, s+l,. . . ,n-1)). 

(55) 

Let us examine the color factor appearing in (55): 

c 3 tr {0[1, t]T”} tr{T’R[t+l, s]Pfl[s+l, n-l]} (56) 

We simplify it by applying the completeness relation for SU(N) to do the implied sum on 

z. The result, 

c = +{R[stl,n-l]R[l,s]T’*} - $tr {!-@,t]} tr {0[s+l,n-l]n[l+l,s]T”“} (57) 

suggests that the manner in which we chose to label the gluons when writing down (54) 

(i.e. the gluons labeled 1 through t as a part of the quark current, and the remaining gluons 

labeled t+l through s, n, and then s+l through n-l as part of the gluon current) is not 

the best way to proceed. Consider the contribution to the integrand from the second term 

of (57). The structure of this term suggests that we write 

f2(Q;1,...,n) = s 
n--l n-l 

p(lI--l) g 5 tr IW~4 tr{W+l, 4) 
xTr{S(Q;l,..., t)J(v+l,..., n-l,n,t+l,..., v)}, 

(58) 

making use of the sum over permutations to simplify the color factor. In this form, it is 

obvious that we may apply the cyclic sum identity [ll] 
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(59) 

to show that all except the t = n-l contribution vanishes. However, the color factor for 

this piece is 

tr{R[l,n-l]} tr{P} = 6. (60) 

Hence, the color-suppressed contribution to the amplitude vanishes, Alternatively, we could 

have considered an extended U(N) gauge theory. The observation that the gauge boson 

coupling the quark loop to the gluon current can not have U(1) quantum numbers in the 

extended theory guarantees that the U(N) and SU(N) results coincide. Then, the absence 

of a l/N term in the U(N) completeness relation implies the absence of such a term in the 

amplitude. 

Turning to the remaining contribution from (57), we see that the order of the color 

matrices suggests that we write 

I^((Q;l,...,n)=-ig” c tr{n[l,nl) 
P(l...n-I) 

n-1 y-l 

~~~~~Tr{Q(&;z+l,..., y)b(y+l,...,n,l,...,z)}. ~(61) 
s 

Equation (61) may be taken as a general starting point for all gluon-gluon scattering di- 

agrams containing a single quark loop. It is valid for any helicity combination. All that 

is required to utilize it is a knowledge of the color-ordered currents appearing on the right 

hand side. 

At this stage we define the color-ordered integrand and color-ordered amplitude. If we 

write 

r^(Q;l,..., n)m--ig” c tr{C2[I,n]}I(Q;l,..., n) 
P(l...n-1) 

(62) 

then, obviously 

n-l u-1 

r(Q;L..., n) =~~~~~Tr{~(Q;t+l,...,y)rl(y+I,...,n,l,...,z)]. (63) 
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As before, the complete amplitude is obtained from (62) by integrating over Q and supplying 

the factor -1 for closing the loop. The color-ordered amplitude is obtained from (63) in the 

same manner. 

We now specialize to the first case for which we have obtained explicit results: n like- 

helicity gluons. In spinor notation, (63) becomes 

1(Q;l,..., n) = fi”~~(V~(Q;r+l,..., y)%s(y+I ,...I n,l I..., z) 
y=l r=cJ 

+**&(Q;r+l,. ..,y)P(y+l,..., n,l,..., z) . (64) 

We choose the gauge indicated by (12). Inserting the solution (A2) for the gluon current we 

find 
n-1 y-1 

I(c.2; 1,. . ,n) = c c 
-(-&)n-Y+z 

$#=I r=O (hlYfl> ., n, 13 2,. ” 9 zlh) 

x ufl(h)[fc(y+l,n) +K(l,Z)]p~Pa(&;z+l,.. < ,y)u,(h) 
{ 

-u=(h)‘I”,~(Q;z+l,... ,y)[i?(y+l,n) +R(l,z)]“‘$(h) 
1 

(65) 

Once again, as promised in Sec. II, all occurrences of the double-off-shell quark current have 

its undotted index contracted into the gauge spinor. Using Eqs. (14) and (17) to insert 

the spinor structure of the quark currents, plus over-all momentum conservation for the 

diagram, we see that the two contributions to (65) are actually equal. That is, 

I(Q; 1,. . ,n) = “2yg (-~)~-~+~(h,~~~(hj~~“~~;~~~~u,j~)l,~)Y(B:z+l,. , y). 
y=1 r=o ?. 9 

(66) 

Since there are no extra powers of Q in the denominator of (66), we should use the regulated 

form for Y given in Eq. (18) and perform a d-dimensional integration. The integrals that 

occur are the same as the ones discussed in Ref. [l], and so we proceed immediately to the 

integrated expression for the color-ordered amplitude 

d(l+, , n’) = - ($$* 5 2 2 tP((h)r;,&(z+l, y)i$$(h) 
r=I y=z+l r=o 

x211(h)lClj(Z+1,Y)[~(Z+1,1-l) - ~(~+l,Y)l+6%(~), (67) 
(41,. . . I z]h)(hlz+l,. . . ,ylh)(hly+l,. . ,n-lln) 
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The expression in Eq. (67) must be gauge invariant by itselfi the color factor for this process 

contains no symmetries which would cause different terms within the permutation sum to 

mix. 

We begin our demonstration that (67) is indeed independent of the gauge spinor by 

isolating a portion of the numerator: 

& m -“~(h)n,,(z+l,y)[z(Z+1,Z-l) - Z(z+l, y)]%Ls(h). 033) 

By writing n(z+l,y) = n(zfl,z-1) + k, +k(zfl,y) we obtain 

N;= -~U’(h)n,i(2+l,y)~46(~+1,ZLl)llb(h) + tl’(h)n-r4(z+l,z--l)~46(1+1,y)us(h) 

-u’(h)k,iZ4s(z+l,x-l)ug(h) i- uy(h)k,~~is(z+l,y)zls(h) 

= -~‘(h)n,i(s,y)~~6(z+1,~-l)llg(h) - a’(h)/c,++1,y)g46(z+1,.)ug(h). (69) 

Since the two terms appearing in the last hne of (69) differ by only a shift in x of 1 unit, for 

the moment we need only discuss operations on one of the two terms. 

Considering then, the contribution from the first term, we have 

U’(h)K,i(l,y)~i6(Z+1,1-1)u6(h) 
x (?zIl,. . ,z(h)(h(Z+l,. . .,y(h)(h(y+l,. ..,n-lln)’ (70) 

The sum on z is very easy to perform because of the identity 

(71) 

a direct consequence of the Schouten identity. Note that we identify ks with k, in apply- 

ing (71) to (70), a9 implied by its,denominator structure. Interchanging the sum on z with 

the implicit k-sum involving z and using (71) yields 

d* = _ (-43” n--? n-1 
48T2 z2 yzT+, “a(h)~~~(~+l,~)~~~ll~(h) ,Un;i”‘h”~~~~~~~~z_l~(~~). (72) 

3. , 7 ,- 

The sum on y is a little more invoived since there are two implicit n-sums involving y. 

The relevant structure to examine reads 
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n--l n-l y = c cc (Y Y-l-1) 
y=r+l o=16=1 (y,h,y+l) [~“(h)k.~~~~P~s(h)l[~‘(h)k~j~i6(l~~-1)~6(k,)]. (73) 

Interchanging the summations and using (71) to do the sum on y produces 

We extend the sum on b appearing in the second term of (74) to the range b E [z, n-l]. This 

allows both sums to be performed in that piece. The compensating term has precisely the 

same range as the first term of (74), and may be combined with it by applying the Schouten 

identity. The result of doing a.ll of this is 

n-1 
a, = -c up(h)k=‘&f n;i(“,a--l)~~‘(l;~--l)u6(k,) 

aal 

+& [~a(h)~,ti(~,~-1)~~Pua(h)][~7(k,)K~~(1,n-1)~46(1,2-1)u6(k,)]. (75) 

The second term of (75) vanishes, since 

u7(k,)K74(1,n--l)~4s(l,2--l)us(k=) = -u’(k~)rcti(l,r-l)Z46(1,.-1).6(k,) 

Inserting the non-vanishing contribution 

ated from the second term of (69) gives 

= -(n n)n*(l,z-l) 

= 0. (76) 

from (75) into (72) and including the piece gener- 

d(l+ , . . , n+)= b--J” gazl ~s(h)b.t%&; a-l)~~;(l,z-1)ua(k.) 
. ,n 

+‘-g?” DYE 
“P(h)k,B~~~~~(z+l,a-l)i2is(l,i)us(kn) 

W...,nlh) 
(77) 

for the color-ordered amplitude. 

To execute the final stage of the reduction, it is sufficient to consider only the numerators 

of (77). Hence, we define 
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n-2 n-i 
N= c c uP(h)kz,&’ 

r=l .a=r+l 
IE,‘1(1,n-1)R4’(1,~--l)u6(k,) 

n-2 n-1 
+c c uqh)k,&& 

r=l a=z+1 
K~(Z+l,U-l)R4’(l,~)us(k,). 

Our first action is to write K(I, a-l) = ~(1, a-1) - ~(1, z-l) to obtain 

n-2 n--l 

N= c c up(h)k+i~ rc,i(l,a-l)~46(1,2-1)U6(k,) 
+=1 a==+1 
n-a n-l 

-zag+, ~2(1~~-1)u’(h)k,p~~~u,(kn) 
n-2 n--l 

+c c uqh)k,@&@ ~74(5+l,U-l)R46(1,X)U6(k,). 
t=, a=*+, 

(78) 

(79) 

Using the Schouten identity on the first term of (79) produces 

n-2 n--l 

N = -c c (n k) ii~(k,)~~K~q(l,a--1)~.4s(l,i-l)us(k,) 
ml a==+, 
n-2 n-L 

+ c c ua(kn)k.,&$’ 
ml a=r+l 

n,i(1,0-1)i146(1,2--l)u6(h) 

n-2 n--l 
- ,c, ag+I “*(L z-1) @4b&‘~(W 

n-2 n--l 

+c c uP(h)k.obi2 ~E-r4(1+11a-l)Ris(l,z)us(kn). 
r=l a=z+, 

(80) 

Since the first term of (80) produces a gauge-invariant contribution to (77), we are led to 

suspect that the last three terms sum to zero. This is indeed the case, as we shall now 

demonstrate. 

Let Z equal the last three terms of (80). We begin by extending the factor of n(z+l,a-I) 

appearing in the last term of 2 to ~(1, a-l) and compensating. The result is 

n-2 n--l 
2 = c c ~P(k,)k,p~~~~j(l,a-l)~46(1,~--1)~~(h) 

*=, a=%++, 
n-2 

- z2 k*(l,z-1) uP(h)k,p~R”‘(z+l,n)u,(k,) 

n-2 n--l 

+ c c ~P(h)k~8~~~K,i(l,a-l)~~6(l,z)us(kn) 
z=, a=r+1 
n-2 n-1 

- za=F+, n*(l~) uP(h)kzjs&8’u,(kn). (81) 
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We now interchange the order of the sum on z and the implicit n-sum involving I that 

appears in the third term of (81), obtaining 

n-2 

2 = - c [n*(l,z-1) +K2(1,z)]uP(h)k~~,jRRb7(z+l,n)u,(kn) 
*=1 
n-2 n-l 

-~~~~++Iu”(h)K6~(l,~-1)R4’(l,o--l)k.,6~~9~p(kn) 

n-2 n--l 

+ c c U~(h)Kaa(z,a-l)~~K,~(l,a--1)~~6U6(kn). 
r=, a-r+, 

(82) 

In the second term of (82) we extend ~(1, z-1) to ~(1, a-l) and compensate: 

n-2 

2= 
-p ( 

K* 1,1-l) +K2(1,~)]uP(fi)k~4d.i16~(~+l,n)u,(k,) 

n-* n-1 
- c c n*(l,a-1) uP(h)k.,&‘u7(k,,) 

r=, n=r+, 
n-2 n--L 

+ c c u6(h)~aq(r,a--l)~i’(1,a-l)k,,~~~4zlp(kn) 
I=, e-z+, 
n-2 n--l 

+ c c Z1P(h)Kpd(I,a-l)~~K74(1,a-l)~~6,6(k,). (83) 
CT=1 a=*+, 

When the sum over I is performed in the second term of (83), it is seen that it partially 

cancels the first term. The last two terms may be combined by noting that 

~iy(l,a-l)k~,a+~~~c,~(l,a-l) = 2k,. ~(1,a-l)g 

= [6*&a) -“s(l,a--l)]f5j. (84) 

Thus 

n-2 

2 = - c ~*(1,~)21~(h)k,s~i2~~(1+1,n)u,(k,) 
==I 
n-2 n-l 

+ c c [K*(l,a) -K*(l, a-l)] U6(h)K6&T,a---l)if7u,(kn). 
r=l o=*+l 

(85) 

The two terms in the double sum appearing in (85) may be combined by shifting the sum 

over a by 1 unit in one of the two pieces, yielding 

n-2 

2 = - c K*(l,s) 21P(h)k=p~R~7(2+1,~)11,(k”) 
s=l 
n-2 n-l 

- c c K2(1,U)116(h)k~i~~u~(kn). 
t=* a==+, 

(86) 
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When we perform the sum over z in the second term of (86), we see that it exactly cancels 

the first term, giving 2 = 0, as promised. 

Thus, the entire amplitude is generated from the first term of (80), with the result 

P(l...n-1) 

“-2 n-1 E~K,B(l,I)RBB(l,y)k~~ 

r=* y=r+l w,. ..,nll) . 

(87) 

As a check of (87), we note that when we set the color factor equal to unity and (numerically) 

perform the permutation sum, we recover the n-photon result reported in Ref. [l]. 

Recently, Bern, Dixon, and Kosower [14] published a conjecture for a particular color- 

ordered subamplitude for the scattering of n like-helicity gluons via a gluon loop. It is 

possible to connect the result derived here for diagrams containing a quark loop to their 

result by use of supersymmetry identities [17]. The bottom line is that the result (87) 

should agree with the conjecture of Ref. [14] up to a trivial multiplicative factor. We have 

verified that the two expressions do indeed agree. Thus, our calculation may be taken as 

the proof of this conjecture. 

Since we know the expression for the giuon current appearing in (61) when the gluon 

labeled “n” carries negative helicity (see Appendix), we may repeat the calculation to obtain 

X(1+ , . . . ((n-l)+, n-). After a somewhat lengthy calculation we obtain 

x(1+, . . ( (n-l)+, n-) = -&(-q&)” c tr {n[17nl} t(l+, , . . , (n-l)+, n-) (88) 
P(,...+,) (WA.. . *a 

where 

t(l+, . . ( (n-l)+, n-) = 
n-2 

~U’(knh4(~7 n)%6%(kn)(kn + n(l,z)]* 

x cfs-;n;j;. + 2 u%P’~‘(n, 1,. . . +ju&)} 
s=2 

+.~u’(kn)K,i(z,n)~~6us(k”) 
2=3 

x ~i~n+a(l,~-l)j”u~(k.) + [kn+~(Ir~-1)]2z~ u”(kn)17Ar(n, 1,. . . , s)u,(kn)} 
a=2 
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n-2 

- 2 u’(k)K,+, n)F@La(kn) Kyr, n) 
r=2 

n-3 n-2 n--l 0-I l 

-zag+, x1 2 ~“Aww~~ ‘. , n, 1,. . . S)U4k”) 

4k”Pd# [ 
‘E7&c)+(s+1,1-l) + n,&+l,a)+(S+l,I) u,(k,) 1 (89) 

and the function ll7 (read “double pi”) is a particular combination of i7’s defined in the 

Appendix. Not all of the terms of (89) contribute when n = 4 or 5. 

Note that n(n, 1,. . . , n-2) appears in the first term of (89). This function contains 

[k,+~( 1, n-2)]-* = kL?r, which is singular for an on-shell gluon. However, there is a factor of 

ki-, available in the prefactor to cancel this singularity. The difficulty with n(n, n-1,. . (2) 

in the third term is resolved in the same manner. 

Eq. (89) agrees with the Bern and Kosower results for n = 4 and n = 5 [13]. This is 

the first calculation including the cases n 1 6. Additional checks are possible, however; by 

comparing to the previously obtained results containing photons. Since the yg + 99.. . CJ 

scattering amplitude may be generated from an all-gluon amplitude simply by replacing a 

color matrix by the identity, we should have the relation 

c A(1 ,..., n--l,n,)= 
C(l...n-1) 

c A(1 ,..., n-l,n) 
C(l...n-1) 

(90) 

connecting the two different color-ordered amplitudes, independent of the helicities of the 

gauge bosons. In the like-helicity case, (90) is obviously satisfied since the color-ordered 

amplitudes themselves are identical [cj. Eqs. (51) and (87)]. In the case of a negative 
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helicity gluon becoming a negative heiicity photon however (Eq. (89) versus Eq. (51)], the 

sum indicated in (90) must actually be performed to see the equality. We have verified that 

the required agreement is indeed present. One further check is provided by replacing all of 

the gluons by photons. Again, when the appropriate additional sums are performed, we 6nd 

agreement with the results reported in Ref. [l]. 

IV. CONCLUSIONS 

In this paper we have applied the double-off-shell quark current containing n like-helicity 

gluons to the problem of one loop QCD corrections. We have found that it is a relatively 

simple matter to obtain the corrections to those amplitudes that vanish at tree-level. This 

is not surprising, since such amplitudes should have a relatively simple form, with no cuts 

in the complex plane. We have obtained compact expressions for the helicity amplitudes for 

photon-gluon scattering, electron-positron annihilation to gluons, and gluon-gluon scattering 

via a quark loop in the case of like-helicity gluons. In addition, the gluon-gluon amplitude 

with a single gluon of opposite helicity in addition to an arbitrary number of like-helicity 

gluons has been computed, albeit in,a somewhat more complicated form. 

Of course, any realistic cross-section computation involves a complete set of helicity 

amplitudes, since the gluons are never observed directly in the final state. In principle, it is 

a straightforward matter to obtain these amplitudes from the recursion relations, although 

a significant amount of computational labor is required. A particularly important question 

to investigate is the mechanism for explicitly canceling the infrared divergences at loop level 

against the appropriate tree diagrams. This is an absolute necessity if one is to develop 

numerical methods for evaluating complete cross-sections. 

A second issue which should be examined is the validity of using the msssless limit for 

the quarks. Although this limit seems reasonable for the light flavors, the large mass of 

the t-quark may translate into significant (if not dominant) mass effects. Thus, an efficient 

means of handling massive fermions, preferably within a recursive framework, should be 

25 



sought. 

In spite of these loose ends, much progress has been made in the evaluation of one-loop 

QCD processes. Amplitudes that are unapproachable from a direct attack starting with only 

the Feynman rules for the theory have been obtained, and in a far more compact form than 

would be expected given the myriad of Feynman diagrams involved. There are additional 

lessons to be learned from continued investigation utilizing the powerful combination of the 

spinor representation, color factorization, and recursion relations. 
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APPENDIX: CURRENTS WITH ONE OFF SHELL PARTICLE 

For convenience, we record here some of the solutions to the Berends and Giele recursion 

relations for currents with one off-shell particle [Ill. 

For the n-gluon current, we have the color factorization 

2% , , . . ,n) = 2g”-’ c tr(D[l,n]T=)J(l,. . . ,n), (Al) 
P(l...n) 

valid for an arbitrary helicity configuration. Note that there is no zero-gluon current. 

We now turn to specific color-ordered currents relevant to the amplitudes computed here. 

For the csse of n like-helicity gluons, Berends and Giele find [ll] 

&&+, . . . , nf) = (-&p--l u&)uP(h)np&(l,n) 
041,. ..,nlh) ’ 642) 

where we use the same gauge momentum h for all of the gluons. 
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We also require color-ordered gluon currents containing a single gluon of opposite helicity. 

In this case the form of the expression depends on the location of the opposite helicity gluon 

in the argument list of 3. For a lone negative helicity gluon we write: 

%&z-J = ~&“P&d~) 
(n h)’ ’ (A3) 

that is, its gauge momentum is h. All of the positive helicity gluons use the momentum k,, 

of the negative helicity gluon as their gauge momentum. If the negative helicity gluon is 

first in the list, we have 

%c+(n-, l+, . . . , z+) = (-~)zua’kn’u~~(I:‘[~~~l~ z)186 2 u’(k&?;(n, 1,. . . ,s)u&(k,,), 
a=1 

(A4) 

while if the negative helicity gluon is last we find 

%&((y+l)+, . . . , (n-l)+, n-) = -(-~)~-Y-l~a~~~~~.)~~~~~~~ n) 

n-1 

x mF+l ~‘(k”)~,6(n,n-l,~~~, rh(k). (A5) 

The function 17 appearing here is defined exactly as in (16) with one exception. When 

precisely two msssless momenta appear as arguments of II, this function is singular. For 

this situation, we define 

* 

u”(km)&7,8(n,j)u,(k.) = (;&; k; = k;t = 0. 

This special definition does not apply if kz # 0, as L’ is a well-defined quantity in that case. 

Finally, we present the expression for the case of the negative helicity giuon appearing 

somewhere in the middle of the argument list: 

&+((y+l)+, . . . , (n-l)+, n-, I+, . . . ,I+) = 

-(-fi)n-Y+--l u;gpy~;;;n’lI: ~‘.~~L;~~ 

x;~l$~~y(+)~8~ ,... ,n-l,n,l,..., s)udk,) (A7) 
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where we have defined 

rn(r,. . ,fl-1, n, 1,. ..(S) = II(r,. . . , n-l,n, 1,. . , s) 

-Lr(r+l,..., n-l,n,l,..., s) 

-Lqs,s-l,..., l,n,n-1 ,.I., r) 

+IT(s-1, s-2,. ..,l,n,n-l,...) r). W 

The version of Eq. (A4) with h = kr was presented by Berends and Giele in Ref. [ll]. The 

remaining color-ordered currents containing a single opposite-helicity gluon closely resemble 

the results obtained for the modified gluon current in Ref. 191. This is not surprising, since 

one way to obtain this current is to begin with a double-off-shell gluon current with all like 

helicities. One may then put one of the two off-shell gluons on shell, assigning it negative 

helicity. Indeed, the inductive proof that (A7) satisfies the Berends and Giele recursion 

relation is virtually identical to the proof given in Ref. [9], the differences lying entirely 

within the terms covered by (A6). This proof is easily adapted to handle these terms. 

It should be noted that even though Ii’T(n-1, 1, n) is apparently dependent upon the 

gauge momentum h, it actually contains 

u’(kn)&%, lb&n) - u’(k,)lT,6(n, n-l)u&) = u’(knV,%, lb&n) - u’(k,)lT,6(n, n-l)u&) = 
(h 1)’ (h 1)’ (h n-1)’ (h n-1)’ 

(hlnll)’ - (hlnln-1)’ (hlnll)’ - (hlnln-1)’ 

W) W) 

which is independent of h. Consequently, the expressions given in (89) and (.47) are also 

independent of h. 
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